9,132 research outputs found

    On Maximal Subgroups of Free Idempotent Generated Semigroups

    Get PDF
    We prove the following results: (1) Every group is a maximal subgroup of some free idempotent generated semigroup. (2) Every finitely presented group is a maximal subgroup of some free idempotent generated semigroup arising from a finite semigroup. (3) Every group is a maximal subgroup of some free regular idempotent generated semigroup. (4) Every finite group is a maximal subgroup of some free regular idempotent generated semigroup arising from a finite regular semigroup.Comment: 27 page

    Maximal subgroups of free idempotent generated semigroups over the full linear monoid

    Get PDF
    We show that the rank r component of the free idempotent generated semigroup of the biordered set of the full linear monoid of n x n matrices over a division ring Q has maximal subgroup isomorphic to the general linear group GL_r(Q), where n and r are positive integers with r < n/3.Comment: 37 pages; Transactions of the American Mathematical Society (to appear). arXiv admin note: text overlap with arXiv:1009.5683 by other author

    A strong geometric hyperbolicity property for directed graphs and monoids

    Get PDF
    We introduce and study a strong "thin triangle"' condition for directed graphs, which generalises the usual notion of hyperbolicity for a metric space. We prove that finitely generated left cancellative monoids whose right Cayley graphs satisfy this condition must be finitely presented with polynomial Dehn functions, and hence word problems in NP. Under the additional assumption of right cancellativity (or in some cases the weaker condition of bounded indegree), they also admit algorithms for more fundamentally semigroup-theoretic decision problems such as Green's relations L, R, J, D and the corresponding pre-orders. In contrast, we exhibit a right cancellative (but not left cancellative) finitely generated monoid (in fact, an infinite class of them) whose Cayley graph is a essentially a tree (hence hyperbolic in our sense and probably any reasonable sense), but which is not even recursively presentable. This seems to be strong evidence that no geometric notion of hyperbolicity will be strong enough to yield much information about finitely generated monoids in absolute generality.Comment: Exposition improved. Results unchange

    Amenability and geometry of semigroups

    Get PDF
    We study the connection between amenability, Følner conditions and the geometry of finitely generated semigroups. Using results of Klawe, we show that within an extremely broad class of semigroups (encompassing all groups, left cancellative semigroups, finite semigroups, compact topological semigroups, inverse semigroups, regular semigroups, commutative semigroups and semigroups with a left, right or two-sided zero element), left amenability coincides with the strong Følner condition. Within the same class, we show that a finitely generated semigroup of subexponential growth is left amenable if and only if it is left reversible. We show that the (weak) Følner condition is a left quasi-isometry invariant of finitely generated semigroups, and hence that left amenability is a left quasi-isometry invariant of left cancellative semigroups. We also give a new characterisation of the strong Følner condition in terms of the existence of weak Følner sets satisfying a local injectivity condition on the relevant translation action of the semigroup

    On residual finiteness of monoids, their SchĂźtzenberger groups and associated actions

    Get PDF
    RG was supported by an EPSRC Postdoctoral Fellowship EP/E043194/1 held at the University of St Andrews, Scotland.In this paper we discuss connections between the following properties: (RFM) residual finiteness of a monoid M ; (RFSG) residual finiteness of SchĂźtzenberger groups of M ; and (RFRL) residual finiteness of the natural actions of M on its Green's R- and L-classes. The general question is whether (RFM) implies (RFSG) and/or (RFRL), and vice versa. We consider these questions in all the possible combinations of the following situations: M is an arbitrary monoid; M is an arbitrary regular monoid; every J-class of M has finitely many R- and L-classes; M has finitely many left and right ideals. In each case we obtain complete answers, which are summarised in a table.PostprintPeer reviewe

    Vector quantization

    Get PDF
    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts

    A Journal for the Astronomical Computing Community?

    Full text link
    One of the Birds of a Feather (BoF) discussion sessions at ADASS XX considered whether a new journal is needed to serve the astronomical computing community. In this paper we discuss the nature and requirements of that community, outline the analysis that led us to propose this as a topic for a BoF, and review the discussion from the BoF session itself. We also present the results from a survey designed to assess the suitability of astronomical computing papers of different kinds for publication in a range of existing astronomical and scientific computing journals. The discussion in the BoF session was somewhat inconclusive, and it seems likely that this topic will be debated again at a future ADASS or in a similar forum.Comment: 4 pages, no figures; to appear in proceedings of ADASS X

    Topological finiteness properties of monoids. Part 1: Foundations

    Full text link
    We initiate the study of higher dimensional topological finiteness properties of monoids. This is done by developing the theory of monoids acting on CW complexes. For this we establish the foundations of MM-equivariant homotopy theory where MM is a discrete monoid. For projective MM-CW complexes we prove several fundamental results such as the homotopy extension and lifting property, which we use to prove the MM-equivariant Whitehead theorems. We define a left equivariant classifying space as a contractible projective MM-CW complex. We prove that such a space is unique up to MM-homotopy equivalence and give a canonical model for such a space via the nerve of the right Cayley graph category of the monoid. The topological finiteness conditions left-Fn\mathrm{F}_n and left geometric dimension are then defined for monoids in terms of existence of a left equivariant classifying space satisfying appropriate finiteness properties. We also introduce the bilateral notion of MM-equivariant classifying space, proving uniqueness and giving a canonical model via the nerve of the two-sided Cayley graph category, and we define the associated finiteness properties bi-Fn\mathrm{F}_n and geometric dimension. We explore the connections between all of the these topological finiteness properties and several well-studied homological finiteness properties of monoids which are important in the theory of string rewriting systems, including FPn\mathrm{FP}_n, cohomological dimension, and Hochschild cohomological dimension. We also develop the corresponding theory of MM-equivariant collapsing schemes (that is, MM-equivariant discrete Morse theory), and among other things apply it to give topological proofs of results of Anick, Squier and Kobayashi that monoids which admit presentations by complete rewriting systems are left-, right- and bi-FP∞\mathrm{FP}_\infty.Comment: 59 pages, 1 figur
    • …
    corecore